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In this paper we present a preliminary optimal orbit analysis

for the Laser Interferometer Space Antenna (LISA). LISA is a

NASA/ESA mission to study gra_4t.ational wa_es and test. pre-

dictions of general relativity. The nominal formation consists of

three spacecraft in heliocentric orbits a.t 1 AU and trailing the

Earth by twenty degrees. This configuration was chosen as a
trade off to reduce the noise sources that will affect, the instru-

ment and to reduce the fuel to achieve the final orbit. We present.

equations for the nominal orbit design I and discuss several dif-
ferent measures of performance for the LISA formation. All of

the measures directly relate the formation dynamics to science

performance. Also, constraint, s on the formation dynamics due

to spacecraft, and instrument limitations are discussed. Using
the nominal solution as an initial guess, the formation is op-

timized using Sequential Quadratic Programming t.o maximize

the performance while satisfying a set. of nonlinear constraints.

Results are presented for each of the performs.nee measures.

INTRODUCTION AND MISSION OVERVIEW

LISA is a NASA/ESA mission to detect and study gravitational waves from massive

black hole systems and galactic binaries. Gravitational waves are ripples in space-time

caused by massive objects. They are a prediction of general relativity but are yet to be

directly detected. The detection and understanding of gravitational waves can provide

breaktilroughs, and refinements in current relativistic theory.

LISA's primary objective is to detect gravita.tional waves in the frequency range

of 10 -4 to 1 Hz. This frequency range is chosen t.o complement ground observations

for frequencies more than 100 Hz. The primary reason for using a space-based system

is to eliminate gravitational noise sources. Ground based observatories are limited to

high frequency measurements because of the extreme sensit, ivity to gravity gradient and

seismic noise.

In this paper we begin by discussing the LISA mission primarily from a mission

design perspective. Secondly, the science objectives and their implications on the orbit

design are discussed. We consider several possible measures of performance..Next, we
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presentthe nominal orbit and discussits perfornmnceunder two-body and real-world
orbit dvnamics. Using the nominal orbit as an initial guess,a SequentialQuadratic
Prograi_mfing(SQP) / Projected Gradient approach is used to optimize the formation

geometry while sinmltaneouslv satisfying design constraints. Results are presented lot

each of the performance measures coIlsidered. Finally, we discuss some conclusions and

point out where more work is necessary to expand the set of acceptat)le solutions.

MISSION OVERVIEW

In this section we give an overview of the LISA mission. \Ve only present a brief

summary of topics that are interesting from an orbit perspective. Considerable concept

developI'nent work has been performed in most areas of the missiom and for more detailed

information on areas not directly related to the orbit (tesign, we refer the reader to the

LISA Final Technica,1 Report. =

The nonfinal LISA formation consists of three spacecraft in carefully designed orbits.

The relative positions of the spacecraft, maintain a nearly equilateral triangle configura-

tion as seen in Figure 1. The minimum science can be performed with two of the legs yet

the third leg can provide additional information as well as offer redundancy in the case

that one leg is lost.. The primary measurement is the relative change in length of two of

the legs of formation. This measurement can give information about both the direction

and polarization amplitude of the gravitational wave.

Optical Assembly

f  Iass

Figure 1: Equilateral Formation Configuration

Each of the three spacecraft has two optical assemblies which can be articulated

so that each assembly points at, the appropriate spacecraft as the formation evolves.

The variation in the angle of articulation is on the order of a few degrees. Each optical



assemblycantransmit andreceivealasersignal.Onesignificantdifferenc,ebetweenLISA
and a conventionalinter%rometeris that the transmitted signalis not simply reflected
back. Becausethe leglengthsare5 million km there is significantlossof signal strength
over the traversal. To ensureadequatesignal strength, the laseron the receivingend
is phaselockedto the incomingsignal,and the phaselockedsignal is then transmitted
ba,ck.

The leg length measurement is referenced to a. free-floating proof mass internal t.o

the spacecraft. The spacecraft's Disturbance Reduction System (DRS) is designed to

ensure that no non-gravitational disturbances affect the proof mass trajectory in the

measurement direction. The DR, S is also responsible for ensuring that the spacecraft

point in the appropriat.e direction. Self gravity between the spacecraft and the proof mass

can cause undesirable complications in the DRS design and unacceptable measurement

noise and is a topic of current research.

The target launch date for LISA is 2010- 2012. Each spacecraft will follow an inde-

pendent, optimal low-thrust trajectory to achieve the mission orbit. Once the spacecraft
arrive in the mission orbits; they separate flom the propulsion modules to reduce any dis-

turbance tha.tl the module might introduce into the measurement. The nominal mission

life is two years with a possibility for an extended mission of five to ten years.

ORBIT REQUIREMENTS AND PERFORMANCE

In this section we discuss several different sets of orbit performance metrics that

are of interest for LISA. The orbit requirements are driven by the signal processing

approach. We discuss five performance measures here and present results for each in a
later section. Part of the challenge of the LISA orbit optimization is finding an optimal

solution within the mission design constraints. G_ conclude this section with a discussion

of some nonlinear constraints that. each solut.ion must satisfy for a feasible orbit..

The current approaches for LISA signal processing can be broken down into two

categories. Here we present, a high-level view of the approaches. For a detailed discussion
see Tinto. 3 The first, category uses data from two of the legs in the formation. Two legs

of the interferometer can provide the mirfimum science. In this case the third leg provides

redunda.ncv and additional measurement information. The second category involves using

measurements from all three legs in the signal processing. For either category of signal

processing, Doppler shifts due to relative velocities above about 15 m/s can degrade

performance. So, it. is necessary to ensure that the maximum rate-of-change of any leg

of the formation is less that 15 m/s.

Before discussing the individual performance measures, we define a few useflfl vari-

ables. The position and velocity vectors of the i th spacecraft are denoted ri and f"

respectively. The leg formed by spacecraft i and ,7 is denoted

Lij =r_-rj (1)



and the le_length is simply gi\;enby

f ,j = lir - r.jll

The rate-of-change of the leg formed by the ith and .jth is denoted

dL,j dri drj

dt = -dt dt

and the magnitude of the rate of change is simply

dL{j dri drj
-_ = dt dt

(2)

(3)

(4)

Two of the five performance measures considered are category one. The first measure

considered, labeled cf], is based on the rate-of-change of two legs of the formation. By

minimizing the difference in rate-of-change between two of the legs in the formation we

may be able to intprove the science performance. The first cost flmction has the form

(dL12 dL23 ) 2

where i'{ is the velocity vector of the ith spacecra.ft_ j, and tc are i_._c!ices.for the remain-

ing two spacecraft., and c_ is a constant for normalization. By mmnmzmg cf_, we will
minimize the difference in relative velocities between two of the legs of the formation.

The second cost function considered is based on the difference in lengths of two of the

legs of the formation. There are two motivations for a cost. function of this form. One
reason is that equal leg lengths may provide better science. The second reason is that if

we achieve equal leg lengths over t.he entire mission, we achieve equal leg rates as well.

This is because if the leg length functions are the same then so are their derivat.ives. This

(:()st fimction is labeled of 2 and is expressed as

1 /0t_ (L12 - L_3) 2 dt (6)= -;.

The remaining three cost functions are category two, and are concerned with opt.i-

mizing a metric based on all three of the legs of the format.ion. The third cost. function
considered is the average rate of change of the legs of the formation. The function is

labeled c f3 and can be expressed as

lf0t_( dL12 dL2_ dL]3 )cf3= c_ _ + _ 4- T el, (7)

It. is also of interest, to determine if we can find an orbit solution that yields a.ll

leg lengths of the formation equal in time. This solution, assuming that the design



const,rah_tsaresatisfied,would minimize difficulties in the signalprocessingschemeas
wellasmitigate redundancydifficultiesif onetile legsof theformation is lost. The fourth
costfunction, c.[4, is expressed as

=

where Lm is the length of the leg formed by spacecraft one and spacecraft two etc.

Finalh'. another approach to ensure that the three legs are ahvays equal in length is

to require that the interior angles of the formation are always 60 degrees. This would

give a "breathing" equilateral triangle. The final cost fimction is labeled cf5 and can be

expressed as.

c.r_=_ ((O_2:_(t)__/3)_+(O23,(,O__/3)2+(O3_(O-_/S)_)clt (9)
C5

where 0n3 is the angle subtended by the vectors from spacecraft 1 to spacecraft 2 and

from spacecraft 2 to spacecraft. 3.

The challenge of the orbit optimization is to find solutions that. minimize a particu-

lar cost function and also satisfy a. set of nonlinear constraints imposed by instrument

and eomnmnications limitations. As mentioned previously, the largest relative velocity

between any two spacecraft must be less than or equal to 15 m/s. The absolute leg

lengths are also a concern. The length of the legs determines the frequency range of the
instrument. The nominal leg length is chosen as 5 million km t.o ensure the instrmnent

is sensitive t.o tile desired frequencies of gravitational waves. We constrain the solutions

so that. the leg lengths lie within 2% of the nominal leg length. Due to articulation limi-

tations on the spacecraft, we constrain the interior angles of the formation to lie between

58.5 degrees and 61.5 degrees. Finally, to meet communications and orbit det.ermination

requirements, the formation must be no more than twenty degrees away from the Earth,

as measured from a vertex at the Sun.

Before moving on to the developement of the nominal formation, it is important to

note that there are other important measures of performance that are not considered

here. Other possible measures of performance include the amount'of fuel required to

reconfigure the formation froin one optimal configuration to another in the event that

one of the legs is lost. How much fuel is required to reconfigure from one optimal scenario

to another is a very important question because the onboard thrusters are expected to

provide a maxirrmm of about 80#N of thrust. Hence, reconfiguring the formation could

take on the order of months, or for some configurations be completely infeasible.



THE NOMINAL ORBIT

In this sectionwepresent,t.henominalorbit to achievea nearlyequilateral configu-
ration usingbasictwo-bodyorbit,dynamics.The approachusedhereis basedon work
from Folkner1 et. al.. The nominal orbit does no_ necessarily satisfy all of the orbit re-

quirements. However the nominal orbit does provide a good initial guess for a numerical

optimization approach. \Ve discuss the two-body evolution of the nominal orbit as well

as the evolution of the formation in the presence of real-world perturbations.

A set. of orbital elements which provides a nearly equilateral formation is given below.

Note that the semimajor axis a, the eccentricity, c, the inclination, i. and the argmnent

of periapsis, a. are the same for all orbits in t.he formation.

(1 = aE

d

d

2aE

c_ = rr/2 or 3_/2

(lO)

(11)

(12)

(13)
(14)

where _z is the semimajor axis of the Earth's orbit about the Sun and d is the nominal

leg length. The longitude of the ascending node 12, and the mean anomaly, M are

different for each orbit, and are given by,

for S/C 1 = (_Q, M) (15)

for S/C 2 = (_ + 2_/3,3i - 2_r/3) (16)

for S/C 3 = (9.- 27r/3, M + 2:r/3) (17)

Before investigating the evolution of the nominal orbit., it is useful to define some

pa.ramet.ers that characterize some in_port.ant aspects of the motion. The average leg

length over the mission life is denot.ed L and is given by

1 _ts (L,2 + L2:3)dt (18)L- 2t/

for a category one cost, function and is given by

1 f/f (L]2 + Lz3 + L;:_) dt (19)L- 3t/

for a category two cost. function. The maximum difference between legs of interest, over

the mission life, is defined as At. Note that this quantity is defined slightly differently

depending on whether the cost. function is category one or two. For a cost function ainred



at optimizinga paramet,er basedon twolegs(categoryone),onh; the two legsof interest
areusedin determiningA,r and we have

A; = ( - (20)

For a category two perfcnunance metric it is more useful t,o define ,_it as

.",v = max( [(t,2(t)-/_23(t)) (/<2(t)- ,%_(t)) (L2:_(t)- L_:_(t))] ) (21)

Another useful design parameter is the maximum percent difference in ]eg length, %At

and is given by
C,Zc,,__qv= IOOAr/ L (22)

The maximum difference in leg rate of change is denoted iS÷ and for a category one

metric is given by

Ar"=ma,x( _ - _ ) (23)

For a category two metric we have Finally', the maximum leg rate of change is denoted 7:

and for a category one metric we have

and for a category two metric we have

) (25)

Figure 2 shows the evolution of several relevant parameters of the nominal solution

under the gravitational influence of a spherical central body with no perturbations. The

upper left hand plot. shows the lengths of the legs of the formation as functions of time.

The leg lengths oscillate sinusoidally centered at 5 million km with an amplitude of
about 100 thousand kin. In the top right plot we see the rate of change of the leg lengths

over one year. The leg ra.tes oscillate about zero m/s with a period of one year and an

amplitude of about 4 m/s. In the bottom left hand plot of Figure 2, we see the evolution

of the interior angles of the formation. The angles oscillate about 60 ° with an amplitude

of about 0.45 degrees.

In table 1 we see the relevant statistics for the nominal orbit. The average arm length

is about 5 million km as desired. The maximum difference between any two arm lengths

is 39370 km and the maximum percent difference is 0.784%. The maximum difference in

leg rates is 7.948 m/s and t.he maximum leg rate of change is 4.010 m/s.

Before moving on to the immerical optimization, we look a.t the affects of pertur-

bat.ions on the evolution of the nominal orbit. Figure 3 shows the evolution of some
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Figure 2: Nonfinal Unperturbed Evolution

Table 1: Statistics for the Unperturbed Orbit.

Variable Name 2 Leg Definition

L 4.999e 6 km

Ar 39370 km

%At 0.7874 %

A÷ 7.948 m/s

4.010 m/s

relevant parameters when perturbations are included in the orbit force model for a five

year propagation. All of the planets and the Earth's moon are included in the force
model. We see that the system is unstable. In Table 2 are the relevant, statistics for the

nominal orbit with perturbations. The performance is poorer than the nominal two-body

solution. The average arm length is still about 5 million kin. However, the maximum

difference between any two arm lengths is now 132,200 km and the maximum percent

difference is now 2.634%. The maximum difference in leg rates is increased t.o 29.08 m/s

and the maximum leg rate of change is 19.06 m/s. From this example, it is evident that

we need modify the nominal orbit not. only to improve the science performance, but also

to stabilize the system for the possibility of an extended mission.

In the next section we discuss an approach to numerically optimize the performance
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Figure 3: Nominal E.votution with Perturbations

of the formation using the nominal solution as an intitial guess. The purpose of the

numerica.1 optimization is two-fold. First, we need to improve the performance of the

nominal orbit., and second we need to reduce the negative affects of perturbations and if

possible, use the pcrt.urbations to our advantage.

OPTIMIZATION APPROACH

Here we discuss the optimization approach and details of how t.he cost and constraint

functions are evaluated. The optimizer used is MATLAB's "fmincon" function. The

function uses a Sequential Quadratic Progamming approach to solve the Kuhn-Tucker

Table 2: Statistics for the Perturbed Orbit (5 Year Propagation)

Variable Name 2 Leg Definition

L 5.00e 6 km

At 132_ 200 km

%At 2.634 %

AT: 29.08 m/s

i 19.06 m/s

9



necessaryequations.For a multivariable,non-linearly constrainedproblemthe Kuhn-
Tuckerconditionsare

+ Z = 0
i=1

A*.(;_(:r*) = 0i

;_; _> o

(26)

= 1, ..., m (27)

=rr_,+l .... ,m (28)

where ./(._:*) is the cost. flmction evaluated at the optimum and G* is the vector of

constraint functions evaluated at the optimum. Simply stated, the necessary conditions

for the constrained optimal solution are that the gradient of the cost. function and the

gradients of the active constraints cancel at the solution. Furthermore, the Lagrange

multipliers of any inactive constraints are zero a.t the solution point.

\,Vc discussed the form of the cost functions investigated in a previous section. Here

we discuss some practical aspects such as what independent variables are chosen and how
the cost functions are evaluated since analytic functions are not available. To simpli_.

some of the constraints and to provide a more intuitive approach to the problem sohtion,

we use the Keplerian elements as independent variables. Therefore, the state vector for

the formation has 18 independent variables. For now, the epoch is assumed to be Jan

01 20t2 at zero hours. To avoid numerical problems, all angles are in radians and the

semimajor axis is nondimensionalized on az, the semimajor axis of the Earth's orbit

about the sun. Lower and upper bounds are placed on the Keplerian elements to restrict

the search space to within known feasible bounds. For example, if the semimajor axis

is not nearly equal to as, then the formation wilt have an undesirable secular drift with

respect, to the Earth. So we require that .gaE < a < 1.1a_. The complete upper and

lower bounds applied are

.9aE < a < 1.1_tE (29)

0 <e< .0105 (30)

0 <i< .021 rad (31)

0 <cv< 27r (32)

0 <t2 < 27r (33)

0 < M< 27r (34)

(35)

All gradients and the Hessian matrix are approximated using finite differencing. A

numerical approach is used to approximate the cost functions since analytic solutions are

not available. To approximate the cost function, two years of ephemeris in one clay time

steps is used. The integrals in Eqs.(5 - 9) are approximated using a trapezoidal approach.
Each cost fnnction is normalized on a characteristic value to ensure the nominal solution

is on the order of one.

10



In the next sectionwediscussthe resultsof the ot)tinfiza.tion for each cost function.

The solutions are discussed in light of LISA perforn-lan(:e requirements and compa.red to

the nominal solution.

RESULTS

In this section we discuss results for each of the five cost functions. A total of about

60 converged solutions have been found. The solutions presented here are representative

of the solutions found to date. Because there are nmltiple constraints and multiple

measures of performance, some solutions not presented here might have slightly better

performance in one area while poorer perfornm.nce in another, or require relaxing some

of t.he constraints.

In Table 3 is statistics for the nominal orbit for a two year propagation. The data

ix provided to allow a. comparison between the performance of the optimal solutions and

the nominal orbit, under perturbations.

Table 3: Statistics for the Perturbed Orbit. (2 Year Propagation)

Variable Name 2 Leg Definition

L 5.00e 6 km

Ar 61,615 km

%At 1.232 %

A÷ 12.072 m/s

÷ 6.918 m/s

Results for c fl

Recall that by optimizing according to the c fl performance measure, we are trying to

reduce the difference in length, of two of the legs in the formation over the entire mission

life. The orbital elements for the solution presented here are in Table 9 in Appendix 1.

As expected the solutions all have nearly the same semimajor axis and eccentricity. The

inclinations differ by about a tenth of a degree.

In figure 4 we see the evolution of some useflfl parameters of the formation over two

years. In the upper right-hand plot, it is seen that. the lengths of Leg12 and Leg31 are

nea.rly equal for the mission life. As expected the rate of change Leg12 and Leg31 are

also nearly equal. It is interesting to note that two of the angles are also nearly equal in

time.

Table 4 shows the statistics associated with this particular optimal solution for cf_.

The average leg length is about 5 million kin. The maximum difference between the

11
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Figure 4: Results for c fl

legs of interest is 5850 kin and the maxinmm percent change, 0_0-/_F, iS .117%. This is

an improvement of an order of magnitude over the nominal solution. For this solution
all constraints are satisfied and inactive. The formation remains about 19° behind the

Earth for the two year mission life.

Table 4: Statistics for Optimal Solution (of1)

Variable Name 2 Leg Definition

L 4.982e 6 km

Ar .5850 km

%At 0.117 %

A? 3.913 m/s

÷ 14.625 m/s

Results for c f2

By minimizing c f2 we minimize the difference in the rate-of-change of two legs of the

formation. The orbital elements for the solution presented here are in Table 10 found

in Appendix 1. The statistics for the solution present.ed here are found in Table 5. The

12



averageleg length is about 5 million kin, and is Ar is 11,182kin. The _-.Ar is 0.226
% and Ai and i are2.185m/s all(l 14.750respect.ively.The (wolutionof the formation
geometryis shownin Figure5
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Table 5: Statistics for Optimal Solution (c.[2)

Variable Name 2 Leg Definition

L 4.958e 6 km

Ar 11,182 km

%At 0.226 %

Ai 2.185 m/s

14.750 m/s

Results for cf:_

Table 11 contains the orbital elements for a.n optimal solution according to the cost

function c f3. Recall that c f3 is developed to minimize the average rate of change of the

legs. A figure showing the evolution of the formation geometry is in Fig. 6. The case

shown here is for a 5 year propagation so we must compare the st.atisties for this case

13



shownin Table6 with the data for the nominalorbitwith perturbations for a five year

propagation shown in Table 2.

\Ve see that the average leg length is about ,1.93 million kin. For thc optimal solution,

tile maximum leg length is 61,442 kin, while the maximum leg length is 132,300 for

the nominal solution. The %At is 1.24% for the optimal case compared to 2.63%, for

the nominal case. Generally speaking, for the results of the </% optimization, all of the

statistics are reduced by a factor of two , as compared t.o the nominal solution.

_0_ Range vs. Time Range vs. Time

5

4.98

 49°" ,cv A-,A,,,,,/'//(g494 "/

4.9 " ' '

-- Leg12
4.88 - Leg23

4.86 Leg31

0 1 2 3 4

Time, years
Angle vs. Time

,_,,_60.5

8o

<
59.5

1 2 3 4 5

Time, years

6

_2
=I o
_-2
_0
_-4

_-6

-8

0 1 2 3 4

Time, years

×10-,Angle Rate vs. Time
1.5

"_ 0.5

-o.5

< -1

-1.5

_i_,I'_ /',/_ /'/,,_/F t)"i

V
1 2 3 4

Time, years

Figure 6: Results for cfa

Table 6: Statistics for Optimal Solution (cf:_)

Variable Name 2 Leg Definition

L 4.931e 6 km

Ar 61442 km

%At- 1.246 %

Ar _ 12.581 m/s

÷ 7.869 m/s
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Results for c.f4 and cf_

Performance measures of 4 and cf,_ are formulated to ensure all legs of the formation

are equal in time. This is equivalent to a "breathing" equilateral triangle formation. To

date no solutions that have acc, eptable per%rmance and meet all of the design constfaints

have been found. Some solutions, which we present here, ha_e been found by dramatically

relaxing some of the design constraints.

In Figure 7 we see a solution obtained using the cf5 cost function, where several of

the constraints have been relaxed. Specifically, we have a.llowed the leg rates to vary up

to 200 m/s and changed the lower bound on the leg lengths to 4 million kin. Although

the figure shows two ),ears worth of data the optimization was only over six months. The

leg lengths are nearly equal for the first, six months. The statistics are shown in Table

7. The maximum di_fference in the leg lengths over the first. 6 months is 7750 km and

the %At is .160_. However, the maximum in leg rate of change is 120.25 m/s which is

much higher than allowable. Furthermore, the system is highly unstable.
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Figure 7: Results for c f5

In Table 8 we see a plot of the evolution of a solution obtained using c f4. As in the

previous example: we have allowed the leg rates to vary up to 200 m/s and changed the

lower bound on the leg lengths t.o 4 million km. The average leg length for this particular

solution is 4.2 million kin. The maximum difference in leg lengths, At, is 3&055 km
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Table 7: Statistics for Optimal Solution (of.s), (6 Month Optimization)

? • }\ a,rla _le Name 3 Leg Definition

L 4.$43_ (_km

57' 7750 km

r/cAr .160 C/c

Ai" 12.16 m/s

÷ 120.25 ln/S

and %At is .817%. The maximum difference in leg rate of change is only 6.94 m/s,

however, the maximum absolute leg rate is 42.02 m/s which is significantly higher than

the ac,ceptable value of 15 ln/S.
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Figure 8: Results for c f4

CONCLUSIONS AND FUTURE WORK

In this paper we presented optimal orbit configurations for the Laser Interferometer

Space Antenna (LISA). The performance measures used are directly related to the science

perfornmnce. Two categories of measmes were considered. The first, category investigated
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Table8: Statisticsfor Optimal Solution(cf4)

Variable Name 3 Leg Definition

L 4.169e _ km

Ar 34,055 km

_,Ar 0.817 %

A/' 6.936m/s

÷ 42.016 m/s

functions only of two legs of the formation. The second category examined solutions that

used all three legs of the formation in the performance metric. Several constraints were

imposed on the solution. The leg lengths were required to be within two percent of

the nominal, 5 million km length. The leg rates of change were constrained t.o be less

than 15 m/s. Due t.o articulation limitations of the instrument, the interior angles of

the formation were constrained to be 60 degrees ± 1.5 degrees. The formation was also

constrained to remain within 20 degrees of the Earth as mea.sm'ed from a vertex at the

Sun.

Feasible optimal solutions for category one perfbrmance measures were presented.

About one order of magnitude of improvement in the measures were achieved over the

nominal solution. Future work in this area. involves a more thorough search of the design

space for improved locally optimal solutions. Furthermore, relaxing the constraints may

allow significant improvement in the performance.

It has proven difficult, to find feasible optimal solutions for category two performance

measures. Two opt.imal solutions were presented to illustrate possibilities if some of the

design constraints can be relaxed. From experience gained so far, it. is very difficult, if

not impossible, t.o find feasible optimal solutions to category two measures within the

current design constraints.
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APPENDIX 1

Table9: cfl Results:Heliocentric _Mean Equinox and Equat.or J2000,01 Jan 2012 00:00:00

OE LISAt LISA2 LISA3

a 149563305282.0 149563443458.0 149563663686.0

e 0.009346203767 0.009676975440 0.0098097142755

i 0.9438362726 t.000909246 0.9196112710

86.37744956 92.20962395 91.05206384

217.3220002 333.4463294 92.13655101

137.7874426 15.41162731 256.4720776

Table 10:

00:00:00

c.f_ Result.s: Heliocent.ric .Mean Equinox and Equator J2000 , 01 .Jan 2012

OE LISA1 LISA2 LISA3

a 152044712039.0 152044847970.0 152044235805.0

e 0.009392823346 0.009730991627 0.009519141055

i 0.8364363303 1.007377459 1.009488404

90.78370457 84.18724496 94.71165172

173.4799425 299.1037480 48.20624884

176.7385178 58.60738171 297.0484844

Table 11:

00:00:00

cf:_ Results: Heliocentric _Mea.n Equinox and Equator J2000 , 01 ,Jan 2012

OE LISA1 LISA2 LISA3

a. 149578965033.0 149580414155.0 149579800648.0

e 0.01034342962 0.009574892492 0.008682661929

i 1.023240970 0.9358205364 0.8785173418

90.76228189 89.11274610 89.41129865

212.7394780 325.7412867 94.24688340

136.5015274 24.79455200 254.5655484
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